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ABSTRACT

Pleural diseases pose a significant burden on healthcare systems due to diagnostic challenges and high costs. Artificial intelligence
(Al) has the potential to provide faster, more accurate, and more reliable results in the diagnosis of these diseases. This review
evaluates the current status of Al technologies in the diagnosis of pleural effusion (PE), malignant PE, tuberculosis pleurisy (TP),
pneumothorax, and malignant pleural mesothelioma (MPM). Deep learning algorithms developed for radiological diagnosis provide
high sensitivity and specificity in determining the presence and severity of PE. Al models that integrate clinical parameters such as
chest computed tomography (CT), positron emission tomography (PET)-CT, and tumour markers in distinguishing between benign
and malignant effusions have significantly improved diagnostic accuracy (area under the curve: >0.90). In cytological diagnosis,
computer-assisted systems such as Aitrox have demonstrated performance comparable to that of expert cytopathologists in diagnosing
malignant effusions. In the diagnosis of TP Al models outperform conventional diagnostic methods, particularly when combined with
laboratory parameters such as adenosine deaminase. Food and Drug Administration-approved Al models are effectively used for the
rapid diagnosis of pneumothorax and for emergency interventions. In MPM diagnosis, Al models using PET-CT images and three-
dimensional segmentation offer significant advantages in prognostic evaluation and treatment response monitoring. However, large-
scale, multi-centre studies are needed to standardise and generalise Al models. In light of these developments, Al may fundamentally
change the diagnostic management of pleural diseases.
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INTRODUCTION

Pleural diseases are heterogeneous, with diverse etiologies posing complex diagnostic and therapeutic challenges.'?
Pleural diseases constitute a serious burden on healthcare systems and patients. They represent a significant burden,
with an estimated annual incidence of 1.5 million cases in the USA and hospitalization costs exceeding 10 billion
dollars.™* Despite established diagnostic principles, no single method adequately meets clinical needs, underscoring the
demand for faster and more accurate tools.??

Artificial intelligence (Al), defined as the simulation of human cognition through machine learning (ML), deep
learning (DL), and data analysis, has recently become an essential component of healthcare.>” Advances in big data
and computational power have enabled Al to provide rapid, precise, and reliable analysis of radiological and clinical
data, improving diagnostic accuracy and reducing clinician workload.*>” While initially developed for imaging,
Al in respiratory medicine is now applied not only to lung cancer screening but also to pleural effusion (PE) and
pneumothorax, and has demonstrated high diagnostic performance in these applications. Well-trained Al systems
integrating clinical, radiological, and laboratory data support physicians with greater accuracy and reduced need for
immediate specialist access. Consequently, Al is expected to play an increasingly important role in chest medicine.>>® A
systematic review confirmed that Al-assisted observers outperformed human readers in detecting thoracic pathologies
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on chest X-rays (CXR) and computed tomography (CT) scans,
achieving higher sensitivity, specificity, accuracy, and area
under the curve (AUC).®

This review discusses the current status, potential advantages,
and limitations of Al applications in the diagnosis of pleural
diseases, and comprehensively evaluates the potential
contributions of these technologies to future clinical
applications inlight of the existing literature.

METHODS

A comprehensive search of the PubMed database was
performed, without restriction on publication dates, using
combinations of the following search terms: “pleural disease”,
“pleural effusion”, “pneumothorax”, “pleural mesothelioma”,
“tuberculous pleurisy”, “artificial intelligence”, “machine
learning”, “deep learning”, “ultrasound”, “cytology”, and
“PET-CT”. We included English-language human studies that
reported the development, validation, or clinical impact of
Al systems in pleural diseases across imaging [CXR, chest
CT, positron emission tomography (PET)-CT, lung ultrasound],
cytology/whole-slide imaging (WSI), and laboratory/biomarker
data. We excluded non-pleural Al studies, editorials, letters
without primary data, and purely technical papers lacking
clinical outcomes. Reference lists and recent reviews were
screened to identify additional relevant publications.

Technique and Modality Overview

Various imaging and laboratory modalities have been used in
Al applications for pleural diseases. CXR is mainly used for

Main Points

e Artificial intelligence (Al)-based imaging algorithms
achieve high diagnostic performance in pleural
diseases, with deep learning models on chest computed
tomography (CT) and positron emission tomography-CT
consistently reporting area under the curve values >0.90
for detecting pleural effusion (PE) and differentiating
malignant from benign effusions.

Automated segmentation and quantification tools
improve reproducibility and workflow efficiency,
particularly for PE volume assessment and malignant
pleural mesothelioma follow-up, reaching near—expert-
level agreement while reducing clinician workload.

Multimodal Al models that integrate imaging with
clinical and laboratory data outperform single-modality
approaches, enhancing diagnostic accuracy in malignant
PE and tuberculous pleurisy, often surpassing traditional
biomarkers alone.

Al-assisted cytology systems demonstrate diagnostic
accuracy comparable to experienced cytopathologists,
offering objective and rapid triage of malignant PEs and
helping address inter-observer variability and workforce
limitations.

Despite promising results, most Al applications lack
large-scale prospective validation, highlighting the need
for multicenter studies, standardized protocols, and
careful clinical integration before routine adoption in
pleural disease management.
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triage of conditions such as pneumothorax and gross effusion.
Chest CT allows detailed segmentation and complexity
scoring of effusions. PET-CT provides additional differentiation
between malignant and benign processes, as well as prognostic
information in malignant pleural mesothelioma (MPM).
Cytology with WSI supports benign-malignant triage in effusion
samples. Lung ultrasound is increasingly being studied for real-
time guidance and monitoring, though data remain preliminary.
Figure 1 illustrates the overall workflow of Al applications
in pleural diseases across different imaging and laboratory
modalities, while Table 1 summarizes their main tasks, reported
performance metrics, and current readiness levels.

Artificial Intelligence in Radiological Diagnosis of Pleural
Effusion

In a study, the Al model developed using 600 posterior-anterior
chest radiographs had a sensitivity of 95%, a specificity
of 97%, and an AUC of 97% for the detection of PE.° The
same study also showed that abnormal radiological findings,
such as air-fluid level, atelectasis, bleb, cardiomegaly, bone
fracture, infiltration, mass, nodule, obstructive airway disease,
pneumonia, and scoliosis, which may introduce bias, did not
affect the algorithm’s performance.

The Al model developed to assess PE severity may aid in
treatment effectiveness and management. In a study evaluating
the presence and severity of PE by Al in chest radiographs of
chronic obstructive pulmonary disease patients, the model
showed 85.4% accuracy (AUC: 0.95) for non-PE images;
12.5% of the 14.5% errors were mild PE." Prediction accuracy
rates for non-PE, small, moderate, and large effusions were
83.95%, 74.19%, 62.16%, and 50%, respectively. Zhou et al."
developed DL models to detect and segment cardiomegaly,
pneumothorax, and PE on chest radiographs. A high-quality,
labeled radiograph dataset was created, with lesion regions
annotated by radiologists. The model used AP75 (overlap >275%
between predicted and actual lesion regions) as the performance
metric. High accuracy was achieved in detecting cardiomegaly
(AP75: 98.0%), pneumothorax (AP75: 71.2%), and PE (AP75:
78.2%). Segmentation performance, evaluated using the dice
similarity coefficient (DSC), was also strong (e.g., lung-field
dice: 0.960). Detection and semi-quantitative analysis times
with DL were significantly shorter than those of radiologists (P <
0.001), potentially expediting clinical workflows. These models
show promise in automating lesion detection and quantitative
analysis, supporting radiologists” diagnostic decision-making.

In a retrospective study, a series of DL-based sequential models
was developed to automatically detect, segment, and classify PE
as simple or complex using CT images from 2,659 patients.’ A
detection-segmentation network based on the self-configuring
nnU-Net architecture achieved 99% sensitivity, 98% specificity,
andaDSCof0.89, matchinghuman-levelvolumetricconsistency.

Five classification models using the random forest (RF)
algorithm, based on radiological features (hyperdense fluid,
pleural thickening, gas, loculation) and radiomic features,
reached an AUC of 0.77 for classifying simple vs. complex
PE. Notably, pleural thickening yielded an AUC of 0.91, and
hyperdense fluid achieved a negative predictive value (NPV) of
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Figure 1. Workflow of artificial intelligence in pleural diseases by modality

Referral — imaging/labs (CXR, chest CT, PET-CT, LUS; cytology if present) — Al modules (triage, detection/segmentation, differential diagnosis, risk

flags) — clinician review with thresholds — action (thoracentesis, biopsy, drain, follow-up) — monitoring (volume change, cytology triage)

Note: Performance pitfalls (e.g., small pneumothoraces on AP CXR and skin folds mimicking pneumothorax) highlight the need for site-specific
calibration and continuous monitoring. In addition, all Al outputs are intended to function as decision-support tools and must be reviewed and

validated by a physician before being used to guide clinical action

CXR: chest X-ray, CT: computed tomography, PET: positron emission tomography, LUS: lung ultrasound, Al: artificial intelligence, MPE: malignant

pleural effusion, BPE: benign pleural effusion, MPM: malignant pleural mesothelioma, LUS: lung ultrasound, nnU-Net: segmentation model

Table 1. Overview of imaging and laboratory modalities used in artificial intelligence applications for pleural diseases

Modality Main Al task(s)

CXR Pneumothorax triage, effusion detection

Chest CT Effus!qn segmentation, simple vs. complex PE
classification

PET-CT MPE vs. BPE differentiation, MPM prognosis

Cytology (WSI)
LUS

Malign vs. benign triage

Effusion detection/segmentation

Reported performance

Sensitivity 84-95%, specificity
88-97%, AUC = 0.95

DSC 0.89; ICC 20.995

AUC up to 0.97

AUC = 0.95; accuracy >90%
Accuracy >90%, DSC 0.70

Notes
FDA-cleared tools available
Highly reproducible, underestimates

absolute volume

Small cohorts; potential in multimodal
fusion

Comparable to expert cytopathologists

Operator dependence reduced with Al

Note: Reported performance values vary depending on dataset size, study design, and validation method. “Readiness” refers to current status: Research (tested in
retrospective or single-center studies) vs. FDA-cleared/deployed (approved tools already used in clinical workflows)

Al: artificial intelligence, CXR: chest X-ray, CT: computed tomography, PET: positron emission tomography, WSI: whole-slide imaging, LUS: lung ultrasound, PE:
pleural effusion, MPE: malignant pleural effusion, BPE: benign pleural effusion, MPM: malignant pleural mesothelioma, DSC: Dice similarity coefficient, ICC:
intraclass correlation coefficient, AUC: area under the curve, FDA: Food and Drug Administration

0.94. Segmentation accuracy remained unaffected by contrast
use or effusion complexity, confirming the model’s robustness
across diverse clinical scenarios.

In a prospective study of 79 patients, the accuracy of an Al
algorithm that quantifies PE volume change via automatic
segmentation of pre- and post-thoracentesis CT images was
compared with actual drainage volumes.” The fully automated
method underestimated drainage by 13.1%, while the semi-
automated method, corrected by a thoracic radiologist,
underestimated by 10.9% drainage, and the error increased
linearly with fluid volume. Despite this, both agreement between
methods [fully automated vs.

semi-automated; intraclass

correlation coefficient (ICC): 0.99] and test-retest reliability ICC:
>0.995 were excellent. These results indicate that, although Al-
based CT measurements are highly reproducible for clinical use,
they consistently underestimate actual volumes, underscoring
the need for calibration or correction, and highlighting the
importance of accounting for algorithmic bias in quantitative
monitoring of PE treatment response.

Artificial Intelligence in the Diagnosis of Malignant Pleural
Effusion

The gold standard for differentiating malignant from benign
PE is cytopathological examination of samples obtained by
thoracentesis or pleural biopsy. Although they have high
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specificity, their disadvantages include low positivity rates
in pathological diagnosis, invasiveness, and high cost."*'>
Therefore, non-invasive diagnostic methods with high sensitivity
and improved diagnostic performance are needed.

Chest CT is one of the initial tools for the differential diagnosis
of PE, and Al models may help reduce radiologists” workload.
Wang et al.’ developed an Al model that used chest CT
features. The study analysed 918 PE cases—607 internal and
311 external—and created a training cohort of 362 cases from
another centre. The model follows a two-stage structure: first,
PE areas were segmented from CT images, producing masks
with high overlap with expert-defined boundaries (mean DSC:
87.6%). Second, three dimensional (3D) PE masks and full
CT volumes were used to classify the effusion as malignant
or benign. The internal test cohort showed an AUC of 0.883,
a sensitivity of 78.4%, and a specificity of 86.2%. In the
external cohort, the AUC was 0.842, with 89.4% sensitivity
and 65.1% specificity. Incorporating clinical data—such as sex,
age, laterality, and PE volume—further improved AUCs in all
three cohorts. The model detects suspicious areas, performs
fine segmentation, and holistically analyzes chest CT features
to differentiate benign pleural effusion (BPE) from MPE. The
authors concluded that this Al model may assist radiologists
and clinicians in PE case management.

Ozcelik et al."” compared the quantitative features of PE on
CT scans with cytological results. The positive predictive value
(PPV), NPV, sensitivity, specificity, and accuracy of the DL model
for the diagnosis of MPE were reported as 93.3%, 86.67%,
87.5%, 92.86%, and 90%, respectively, for differentiating
benign from malignant PE. In another study, the applicability
of one DL model and five ML models in differentiating MPE
from BPE was investigated.'® In this study, a total of 898 patients
were included; data from 726 patients were used for training
and testing the models, and data from 172 patients were used
for the prospective validation. The diagnostic performance, as
measured by the AUC, was 90.9% in the training set, 88.3% in
the test set, and 86.6% in the validation set. When laboratory
findings were included, the addition of the carcinoembryonic
antigen (CEA) level in PE showed the best diagnostic
performance, with an AUC of 90.9%, a sensitivity of 82.09%,
and a specificity of 91.37% at a cut-off value of 3.6 ng/mL.
Clinically, this threshold can help non-invasively distinguish
malignant from benign effusions and guide decisions about
whether to proceed with or defer invasive procedures. The
results of this study show that using Al to guide physicians in PE
management is a highly effective, non-invasive diagnostic aid.

In another study, an ML model based on clinical, blood, and
pleural-fluid examination features was developed to classify the
etiology of PE into five groups, including transudate, malignant,
parapneumonic, tuberculous pleurisy (TP), and others.” In this
retrospective study, 18 basic features were identified by feature
selection (FS), including history of malignancy; blood test
results such as C-reactive protein and albumin; and pleural fluid
characteristics such as lactate dehydrogenase (LDH), protein,
adenosine deaminase (ADA), and CEA. The model’s AUC for
detecting MPE was 0.930 in the validation set and 0.916 in the
extra validation set. The light gradient boosting machine (GBM)
model showed the best performance, with accuracies of 81.8%
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and 78.7% in the validation and extra validation datasets,
respectively. This ML algorithm provided high accuracy in
the differential diagnosis of PE and may be useful as a clinical
decision-support system by guiding clinicians regarding the
necessity of invasive procedures.

Zhang et al.?® developed five ML models—XGBoost, logistic
regression (LR), Bayesian additive regression trees, RE and
support vector machine (SVM)—to assess the diagnostic
performance of CEA, CA19-9, CA125, and CA15-3 in PE.
Using these models, 319 PE cases were analyzed using both
individual and combined tumor markers. Among single-marker
models, the XGBoost model with CEA showed the highest
AUC (0.895) and sensitivity (80%), while that with CA153 had
the highest specificity (98%). Among marker combinations,
the XGBoost model with CEA + CA153 achieved the highest
AUC (0.921) and sensitivity (85%), whereas both the XGBoost
model with CA125 + CA153 and the LR model with CEA +
CA153 + CA19-9 achieved the highest specificity (97%). In
another study, five Al models were developed using laboratory
data from 2,352 patients.?! The XGBoost model outperformed
other models, with AUCs of 0.903, 0.918, and 0.886 in the
training, validation, and test cohorts, respectively; it also
achieved specificities of 89.2%, 93.4%, and 91.8%, and
sensitivities of 86.1%, 84.4%, and 80.4%. PE CEA was the
most important predictor, followed by serum CYFRA21-1,
PE CA125, haematocrit, creatinine, calcium, and neutrophil
percentage. The model also outperformed the standalone PE
CEA in differentiating MPE from BPE.

The reported sensitivity of pleural fluid cytology is between
40% and 90%, depending on the tumor cell type.?? However,
inconsistencies are observed among pathologists in manual
screening results, which suggest that these examinations are
subjective. Although pleural metastasis indicates advanced-
stage disease with a survival of 3-12 months, patients’ life
expectancy can be prolonged by prompt diagnosis. Early,
accurate, rapid, and objective diagnoses can be achieved
using automatic image analysis. Therefore, the development
of computer-aided diagnosis (CAD) systems is essential. Win
et al.?* developed a CAD system for the diagnosis of MPE.
In this system, 201 cellular features were analysed, and high
diagnostic performance was achieved, with 87.9% sensitivity,
99.4% specificity, and 98.7% accuracy for the diagnosis
of MPE. In another study, an Al model called “Aitrox” was
applied to classify benign and malignant lung cancer cells
in PE cytology.?* The diagnostic performance of the model
was compared between junior and senior cytopathologists.
The “Aitrox” Al model featured in this study is a weakly
supervised DL method based on a deep convolutional neural
network (DCNN) designed to classify benign and malignant
cases in lung cytological images at the WSI level. Aitrox Al
achieved 91.67% accuracy, 87.5% sensitivity, and 94.4%
specificity, with an AUC of 0.9526. These rates were higher
than those of young cytopathologists and similar to those of
senior cytopathologists. It has been demonstrated that this Al
model provides more objective and consistent results than
those of cytopathologists and may help alleviate the shortage
of cytopathologists. Current research shows that Al can be
used as an effective tool in the rapid cytological diagnosis of
MPE. In addition to classifying PE as malignant or benign, Al
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models could be developed to detect atypical cases or cases
suspected of being malignant.

In a study using an Al algorithm to screen PET-CT scans for
the diagnosis of PE in patients with malignancy, a sensitivity
of 95.5%, a specificity of 92.6%, and an AUC of 97.7% were
obtained for the diagnosis of MPE.?> In the study, various
clinical characteristics of the patients were not addressed, and
the sample size was small; previous reports have also indicated
that the results may differ if these limitations are mitigated.

Ultrasonography (USG) is widely wused for diagnosing
and monitoring lung pathologies due to its safety, bedside
applicability, and low cost, though its main limitation is operator
dependence. In a study aiming to develop an automated PE
diagnosis system, a dataset of 623 videos comprising 99,209
two dimensional (2D) USG images from 70 patients was
created.?® Two models were trained using frame- and video-
based labels. Based on expert interpretations, the models
achieved accuracies of 92.4% and 91.1%, respectively, with no
significant difference between them. The study demonstrated
that PE can be reliably and efficiently diagnosed from USG
images using Al. In another study, a DL model was developed
for accurate segmentation of lung USG images of PE, and its
performance was compared with that of experts.”” A total of
3,041 USG images from 24 PE patients were segmented by
two USG experts and used as the ground truth. The model’s
performance, assessed by DSC, was 0.70 for comparisons
between the Al and experts, while the expert-to-expert DSC
was 0.61. These results indicate that the algorithm’s accuracy
is comparable to that of human experts, supporting its potential
as a reliable tool in PE diagnosis and management.

Artificial Intelligence in the Diagnosis of Tuberculous Pleurisy

TP is one of the most common forms of extrapulmonary
tuberculosis (TB).2¢2° The incidence of TP varies according to
the prevalence of TB. While it constitutes 4% of all TB cases
in the USA, TP constitutes 20% of cases in South Africa.? The
gold standard for the diagnosis of TP is the demonstration of TB
bacilli in PE or biopsy samples. Elevated ADA and interferon-
gamma (IFN-y) levels in PE are important supportive diagnostic
markers.>%3" Comprehensive PE analysis, including ADA and
IFN-y levels, vyields higher diagnostic accuracy; however,
different cut-off values are reported.*°*? On the other hand, the
efficiency of these markers varies with disease prevalence and
age group.’*?" The microbiological culture positivity of PE for
the diagnosis of TP ranges from 12% to 70%, and the highest
reported diagnostic yield is 30%.2° When solid media are used,
it can take up to 8 weeks to obtain the results.’® Pleural biopsy
is another invasive, costly, and complication-prone diagnostic
procedure. TP usually heals spontaneously, but 43-65% of
these patients develop TB within a few years.?**' Therefore,
early diagnosis and treatment of TP are important to prevent
both fibrothorax and recurrent TB disease. It is necessary to
develop a less-invasive, low-cost method with a high diagnostic
yield for the diagnosis of TR?8:30-32

Several studies have explored the potential of Al models to
enhance clinicians’ diagnostic performance in TP Ren et al.*?
compared the performance of four Al models—LR, k-nearest
neighbour (KNN), SVM, and RF—against pleural fluid
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adenosine deaminase (pfADA) levels using a dataset of 443 PE
cases that included demographic, clinical, and fluid analysis
data. Combining Al models with pfADA yielded the highest
diagnostic performance: 85.4% sensitivity, 84.1% specificity,
and 84.7% accuracy at a pfADA cut-off of 17.5 U/L. When
the cut-off is set at 17.5 U/L, the threshold can support clinical
decision-making by favoring early initiation of anti-TB treatment
in patients with a high pretest probability and concordant
imaging or clinical findings, while deferring invasive procedures
such as pleural biopsy. LR estimates outcome probabilities;
KNN classifies based on the majority class of nearby samples;
SVM identifies a hyperplane maximizing class separation; and
RF uses multiple decision trees, combining their outputs to
reduce overfitting and improve stability. Among all models, RF
achieved the best performance (AUC: 0.971; sensitivity: 89.1%;
specificity: 93.6%; PPV: 91.3%; NPV: 91.5%), outperforming
LR (AUC: 0.876), KNN (AUC: 0.895), and SVM (AUC: 0.918),
and pfADA alone.

A prospective multicentre study assessed, using ML, the
diagnostic value of ADA levels, routine pleural fluid parameters
(pH, glucose, protein, LDH, cell counts), and age for TP
diagnosis in low-prevalence areas.’> The SVM model showed
the best performance with 97% accuracy, AUC: 0.98, 91%
sensitivity, and 98% specificit. When ADA >40 U/L and
lymphocyte ratio >50% were used, sensitivity and specificity
were 97% and 93%, respectively, with a 100% NPV. In low-
prevalence settings, this high NPV can help avoid unnecessary
invasive diagnostic procedures by reliably ruling out TP
Including age and routine clinical parameters increased ADA
specificity to 98% and PPD positivity rate to 64%, supporting
its non-invasive diagnostic value. Another study used a decision
tree and a weighted sparse representation-based classification
(WSRC) model to differentiate TP from MPE based on pleural
biomarkers.** Among 236 patients, ADA had the best individual
performance (sensitivity: 91.9; specificity: 74%). Accuracy
improved when age, polynuclear leukocytes, and lymphocytes
were added. WSRC achieved an AUC of 0.877, sensitivity
93.3%, specificity 82.0%, PPV 87.5%, and NPV 90.1%. A
decision flowchart based on these markers achieved an accuracy
of 88.8% and provided a cost-effective and reliable tool. Liu et
al.*> developed several ML models for early TP diagnosis using
data from 1,435 patients (plus 153 for external validation).
The SVM model performed best, with 87.7% accuracy, 85.3%
precision, an AUC of 0.914, 94.7% sensitivity, and 80.7%
specificity. PE-ADA, PE-CEA, and serum CYFRA21-1 were the
top predictors. In another study, five Al models—including LR,
RF, gradient boosting, deep neural networks, and a contrastive-
loss model—were compared to assess the etiology of PE, with
ADA levels incorporated.?® The contrastive-loss model had
the best performance (sensitivity: 84.1%; specificity: 94.1%),
surpassing those of traditional ADA-based criteria (sensitivity:
80.2%; specificity: 90.3%).

Li et al.’” aimed to develop a novel Al model to diagnose
TR The study used 77 features, including clinical symptoms,
routine blood tests, biochemical markers, pleural fluid cell
counts, and fluid biochemistry. To optimize performance and
identify key diagnostic factors, a FS model was used. The top
five features were PE-ADA level, percentage of lymphocytes in
pleural effusion (PELP), age, body temperature, and pleural fluid
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color. An SVM model classified patients as TP or non-TP. The
moth flame optimization (MFO) algorithm optimized the SVM
parameters to achieve optimal performance. The resulting FS-
MFO-SVM model achieved 95% accuracy, 93.35% sensitivity,
97.57% specificity, and an AUC of 95.6. This model predicts
TP using patient data, such as clinical signs, blood tests, and
pleural fluid analysis, with decisions primarily based on PE-
ADA, PELP age, temperature, and fluid color. The authors
suggested that this non-invasive method could be an alternative
to pleural biopsy and could hold promise for use in resource-
limited settings due to its low cost and portability.

Artificial Intelligence in the Diagnosis of Pneumothorax

Pneumothorax can cause significant morbidity and mortality
depending on the severity of the air leak and on the patient’s
cardiopulmonary reserve, as it impairs oxygenation and
ventilation. Rapid detection and intervention are therefore
essential. Chest radiography is the first-line and most commonly
used imaging modality for diagnosis. However, pneumothorax
may go undetected in 20% of cases, requiring thoracic CT.
Researchers have evaluated the performance of radiologists and
Al using large CXR datasets, with promising results. Al can be
particularly helpful in settings that lack experienced clinicians or
radiologists, both for detection and for severity grading. However,
digital image quality and the presence of chest tubes have
been shown to limit Al performance. On CXRs, Al models may
misidentify a chest tube as a pneumothorax or focus on the tube
instead of the actual air leak, reducing diagnostic accuracy.®*®

Various Al models have been developed for pneumothorax
detection, and many of these models have received Food
and Drug Administration (FDA) approval. The sensitivity of
FDA-approved Al tools for diagnosing pneumothorax ranges
from 84.3% to 94.6%, and specificity ranges from 87.9% to
95.1%. Al can be used primarily for triage and to provide a
second opinion. Al requires less time to read radiographs than
physicians do. Pneumothorax among patients presenting to
the emergency department is very rare, when considering all
radiographs obtained. An Al-enabled pneumothorax detection
tool can rapidly identify true-positive cases and reduce waiting
times for these cases in the emergency department.?4°

Studies comparing the performance of Al with that of
radiologists are crucial for understanding Al’s effectiveness
and limitations in medical imaging. In a meta-analysis of 63
studies, the overall AUC was found to be 0.97 for both Al and
physicians.’® In this meta-analysis, the average sensitivity was
84% for Al and 85% for physicians; the average specificity
was 96% for Al and 98% for physicians. In a multicenter
retrospective study of 2,040 patients, Plesner et al.*' reported
that Al models detected pneumothorax with sensitivities of 63-
90% and specificities of 98-100%. False-negative rates were
comparable to those in radiology reports, but Al showed higher
false-positive rates. Sensitivity decreased for small lesions, and
specificity was lower for A-P chest radiographs and cases with
multiple simultaneous pathologies. Kim et al.*> developed an
Al-based model to calculate pneumothorax area and compared
its performance with that of an experienced radiologist
and a gold-standard CT-based method. The measured
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pneumothorax rates were 5.41% for the radiologist and 8.45%
for Al, representing a 3.04 percentage-point gap favoring the
radiologist. However, no significant difference was observed
between Al predictions and the gold standard (P = 0.11). The
Al model successfully predicted the need for thoracostomy
when the proportion of the chest radiograph occupied by
pneumothorax exceeded 21.6%. Despite limitations such as a
retrospective design and small sample size, the study highlights
Al’s potential utility in clinical practice. A study of 500 chest
radiographs that investigated radiologists’ performance with
and without Al assistance found that unaided radiologists
achieved the highest sensitivity (75.7%) and specificity (99-
99.7%) in the diagnosis of pneumothorax.** Al alone achieved
99% specificity for pneumothorax and improved sensitivity
for all findings compared with unaided readers. Additionally,
Al assistance reduced average reading times by 25 seconds
(from 81 to 56 seconds, P < 0.001) without affecting specificity.
However, Al-assisted radiologists did not outperform Al alone,
possibly because mistrust of Al led to accurate detections
being dismissed. The study highlights Al’s potential to enhance
diagnostic sensitivity and efficiency across expertise levels
while reducing reading times for chest radiographs.

Hillis et al.* evaluated the performance of an Al model
designed to detect pneumothorax and tension pneumothorax.
This Al model identified pneumothorax with 94.3% sensitivity,
92.0% specificity, and an AUC of 0.979, and detected tension
pneumothorax with 94.5% sensitivity, 95.3% specificity, and
an AUC of 0.987. When subgroup analyses were conducted for
gender, age, patient’s position, and projections, all subgroups
achieved at least a sensitivity of 80%, and a specificity of
80% with an AUC of 0.95. Even in the presence or absence of
potentially biasing findings, detection of both pneumothorax
and tension pneumothorax maintained 80% sensitivity and
80% specificity, with an AUC of 0.95.

Thian et al.** investigated the performance and generalizability
of an Al model on 2,931 chest radiographs. The mean AUC was
0.94, with a sensitivity of 88%, specificity of 88%, PPV of 71%,
and NPV of 95%. The model demonstrated lower performance
for small pneumothoraces compared to larger ones (AUC 0.88
vs. 0.96; P = 0.005). The model’s performance did not differ
between radiographs with and without chest tubes (AUC 0.95
vs. AUC 0.94; P > 0.99) or between radiographic projections
(A-P vs. P-A; AUC 0.92 vs. AUC 0.96; P = 0.05). Thian et al.*
showed that the Al model trained on a large database became
generalizable after limiting factors unrelated to the training data
were eliminated. In the study by Lee et al.*, the overall PPV for
Al-assisted pneumothorax diagnosis was reported to be 41.1%.
The PPV was higher for P-A views (88.2%), but dropped to
20.1% for A-P views. Younger age, P-A projection, and larger
pneumothorax were associated with increased PPV for Al-
assisted pneumothorax diagnosis. In 31.3% of false-positive
cases flagged by Al, the underlying cause was identified: 20.5%
were due to skin folds, 5.6% to chest wall abnormalities, 3.1%
to bullae, and 2.1% to rib opacities.

Hong et al.* evaluated 1,319 patients who underwent
transthoracic lung biopsy, using an Al model to assess post-
procedural chest radiographs for iatrogenic pneumothorax.
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They found that the Al-assessed group had higher sensitivity
(85.4% vs. 67.1%), NPV (96.8% vs. 91.3%), and accuracy
(96.8% vs.92.3%) than radiologists’ interpretations (P< 0.001).4¢
There were no significant differences between the groups in
specificity and PPV (P=0.46 and P=0.45). In analyses based on
pneumothorax volume, the Al model showed higher sensitivity
in patients with pneumothorax <10% (74.5% vs. 51.4%, P =
0.009) and in those with pneumothorax 10-15% (92.7% vs.
70.2%, P = 0.008). Among patients with pneumothorax, the
Al-assessed group required fewer catheters than the other
group (2.4% vs. 5%, P=0.009). At the conclusion of the study,
the researchers suggested that the Al model could be used to
diagnose iatrogenic pneumothorax on CXRs, allowing patients
with small pneumothoraces to be diagnosed earlier and treated
conservatively before air leakage progresses.

Artificial Intelligence in the Diagnosis of Malignant Pleural
Mesothelioma

MPM is associated with asbestos exposure in 80% of cases.
Although asbestos is banned in many countries, MPM incidence
continues to rise. Given a poor prognosis and average survival
of 9-14 months after diagnosis, rapid and accurate detection
and assessment of treatment response are essential. Prognosis
and treatment monitoring often rely on tumor segmentation in
serial thoracic CT scans and interpretation of PET-CT images-
processes prone to human error and a high workload for
radiologists. 3D CT image analysis offers advantages for more
accurate prognosis and treatment evaluation. Accordingly,
various Al models have been developed and investigated for
MPM applications.*-°

Segmentation of MPM is highly challenging, as it relies
solely on density differences to distinguish tumor tissue from
surrounding benign soft tissue. In Sensakovic et al.* study,
a system was developed to automate segmentation and
volumetric measurement. This method yielded 3D positional
and volumetric information that was validated against 2D
manual detections, significantly reducing human error
and saving time. This allowed pleural abnormalities to be
objectively monitored through serial imaging and for changes
in size to be detected. In a study by Karapinar Sentiirk and
Cekic*, the performance of five Al models for diagnosing MPM
was evaluated in terms of accuracy and sensitivity. The models’
accuracies ranged from 80% to 100%, and sensitivities ranged
from 50% to 100%. SVM and Artificial Neural Networks
(ANN) demonstrated the highest accuracy and sensitivity
(100%). However, because the majority of samples in this study
belonged to non-diseased groups, these rates may differ in real-
world settings. Another study investigated the performance of
a 3D DCNN-based Al model that used PET-CT to differentiate
MPM from benign pleural diseases.* Results from four datasets
were analyzed: PET-CT-Al; radiologist interpretation; maximum
standardized uptake value (SUV, ) quantitative method; and
PET-CT combined with SUV__, gender, and age, with Al. The
AUC values were 82.5%, 85.4%, 88.1%, and 89.6. In the last
protocol, sensitivity, specificity, and accuracy were 88.5%,
73.6%, and 82.4%, respectively. Al integrated solely with
PET-CT demonstrated inferior performance compared with
expert interpretation and SUV,__-based quantitative methods.
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However, Al integrating PET-CT, SUV,__, gender, and age
demonstrated superior diagnostic performance compared with
human interpretation and SUV __ -based methods. In a study by
Er and Tanrikulu®® involving 324 MPM cases, a newly developed
Al system achieved an accuracy rate of 97.7%, outperforming
the ANN algorithm. This algorithm has been reported to be an
excellent auxiliary tool for diagnosing MPM.

No single PE biomarker provides sufficient diagnostic accuracy
for MPM. Therefore, using multiple biomarkers could be
a suitable approach to improve diagnostic efficiency. The
integration of multiple biomarkers using Al models can
enhance diagnostic yield. In a study involving 188 patients
with undiagnosed PE, six ML-based Al models were tested
using the biomarkers SMRP. CEA, and CYFRA21-1: LR, linear
discriminant analysis, multivariate adaptive regression splines,
KNN, GBM, and RE*' Among these algorithms, the LR model
significantly improved the diagnostic accuracy for MPM,
achieving an AUC of 0.97 and an accuracy of 91%. Similarly,
another study examined four Al models for the differential
diagnosis of MPM based on cytological analysis and tumor
marker concentrations.”?> The logic learning machine (LLM)
showed the highest performance, with an accuracy of 77.5%,
while the accuracies of the other three methods —KNN, ANN,
and decision tree models— ranged from 54.4% to 72.8%.
Furthermore, the LLM achieved diagnostic accuracies of 79%
for MPM, 66% for pleural metastasis, and 89% for benign
pleural diseases.

DISCUSSION

Most of the current Al studies in pleural diseases are based on
relatively small, single-center cohorts, which inherently limit
their external validity and generalizability. While reported
accuracy and AUC values are often high, these findings should
be interpreted with caution, as the real-world performance of
Al models may differ substantially in heterogeneous patient
populations and across diverse clinical settings. Therefore,
large-scale, multicenter validation studies are urgently needed
to confirm their clinical applicability.

Strengths and Limitations of Artificial Intelligence in Pleural
Diseases

Despite promising results, Al models in pleural diseases face
several important limitations (Table 2). Data imbalance and
selection bias may lead to overfitting, reducing the reliability
of predictions when applied to broader populations. Another
critical issue is explainability: the so-called “black-box” nature
of DL algorithms limits clinicians’ ability to understand how
specific outputs are generated, thereby reducing clinicians’
trust in the technology. Furthermore, the lack of transparency
complicates clinical decision-making, especially in high-
stakes scenarios such as invasive interventions. Finally, the
majority of existing models are validated retrospectively, which
underscores the need for prospective, multicenter studies with
rigorous external validation before routine clinical adoption.

Implementation and Clinical Integration

For the rational integration of Al into pleural disease
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Table 2. Strengths and limitations of artificial intelligence models in pleural diseases

Mod.a ht).,/ sl Strengths
application
Widely available, fast triage (PE,
Chest X-ray pneumothorax); FDA-cleared tools exist; high
sensitivity/specificity in large datasets
Excellent anatomical detail; robust
Chest CT segmentation Wlth nnU—Net;. reproducible
volume analysis; useful for simple vs. complex
PE classification
Adds functional data for MPE vs. BPE and
PET-CT MPM prognosis; multimodal fusion improves
performance; high reported AUC
Al systems (e.g., Aitrox) achieve performance
Cytology/Wsl comparable to expert cytopathologists;

potential to reduce inter-observer variability;
supports rapid triage

Safe, bedside, radiation-free; Al reduces
operator dependency; early studies show
>90% accuracy

Lung ultrasound

Al + ADA and lab parameters improve
diagnostic yield; potential non-invasive
alternative to biopsy in resource-limited
settings

Tuberculous
pleurisy models

Al-based segmentation improves
reproducibility in tumor volume monitoring;
multimodal models integrate PET-CT +
biomarkers with promising accuracy

Malignant pleural
mesothelioma

Limitations References
Lower accuracy in small effusions/pneumothorax;

susceptible to artifacts (skin folds, tubes); G4
generalizability depends on dataset diversity

Consistently underestimates absolute fluid

volume; requires calibration; high radiation AR

exposure; most studies single-center with limited
validation

Small sample sizes; expensive and limited
availability; performance may drop in real-world
heterogeneous populations

16,25,49

Dependent on quality of slide preparation; limited
datasets; still requires pathologist oversight; “black
box” decisions reduce trust

23,24

Limited training data: performance varies
with probe settings and acquisition quality;
segmentation less robust than CT

26,27

Cut-off values differ by geography/epidemiology;
small sample sizes; external validation rare

32-37

Challenging tumor-benign tissue differentiation;
many studies use retrospective datasets; real-world
validation lacking

47-52

Al: artificial intelligence, CT: computed tomography, PET: positron emission tomography, WSI: whole-slide imaging, PE: pleural effusion, FDA: Food and Drug
Administration, nnU-Net: no-new-U-Net segmentation framework, MPE: malignant pleural effusion, BPE: benign pleural effusion, MPM: malignant pleural

mesothelioma, AUC: area under the curve, ADA: adenosine deaminase

management, stepwise frameworks should be considered. At
the initial stage, Al can serve as a triage and screening tool,
for example in chest radiography for effusion or pneumothorax
detection. At the intermediate level, Al models may provide
decision support by predicting the likelihood of malignancy
and guiding the necessity of invasive procedures such as
thoracentesis or biopsy. At the advanced level, Al may assist
in treatment monitoring, such as evaluating changes in effusion
volume or tumor burden in MPM. Importantly, Al should be
viewed as an adjunctive decision-support system rather than
a replacement for physician judgment, with outputs always
interpreted within the broader clinical context. Our findings are
consistent with the recent narrative review by Marchi et al.,’
which also emphasized the importance of critically evaluating
Al models, particularly regarding their generalizability and the
necessity of developing frameworks for rational integration into
clinical workflows.

Al applications for pleural diseases require careful planning
for translation into clinical workflows. Intended clinical roles
include triage and second-read tools for pneumothorax on chest
radiographs, automated segmentation and volume tracking of
PEs on CT, and cytology triage systems to prioritize suspicious
samples for pathologist review.

e Integration: Seamless interoperability with Picture Archiving
and Communication Systems and Electronic Health Records is
essential. Al outputs should be provided in DICOM-compatible

formats, incorporated into structured reports, and logged with
audit trails to maintain accountability.

e Regulatory examples: The approval and deployment of
FDA-cleared pneumothorax detection algorithms provide
precedents for the integration of Al in pleural disease
workflows. These experiences highlight the importance of
prospective validation, calibration, and clinician oversight in
safe implementation.

e Training: Adoption requires short, role-specific training
sessions for radiologists, pulmonologists, and pathologists.
Training should cover interpretation of confidence scores,
handling of false positives, and recognition of model
limitations.

e Cost and time-saving considerations: Evidence from real-
world radiology practice suggests that Al triage can reduce
report turnaround times and improve sensitivity. Automated
CT segmentation and cytology triage also have the potential
to reduce workload and shorten diagnostic delays. Formal
cost-effectiveness analyses remain necessary to confirm the
economic value of these tools in pleural disease management.

Future Directions

To accelerate translation of Al in pleural diseases into clinical
practice, the following priorities are needed:
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e Multicentre prospective trials with predefined thresholds and
patient-relevant outcomes to validate diagnostic performance
in real-world settings.

e Domain-shift and out-of-distribution testing across different
scanners, institutions, and patient populations to ensure
generalizability.

e Multimodal data fusion combining imaging (CT, PET-CT, USG),
cytology, and clinical data to enhance predictive accuracy and
robustness.

e Real-time USG guidance tools to support novice operators
and improve procedure safety and efficiency.

e Economic evaluations and cost-effectiveness analyses to
clarify resource savings and sustainability within healthcare
systems.

e Bias and calibration checks at deployment sites, with
continuous monitoring dashboards to maintain safety and
fairness.

e Creation of open datasets and benchmarks for pleural imaging,
cytology, and biomarker Al tasks to foster reproducibility and
global collaboration.

e These steps will provide the field with a clear roadmap,
bridging experimental success toward responsible clinical
implementation.
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CONCLUSION

Based on current evidence, the most promising Al applications
in pleural diseases are listed in Table 3. These include
radiological segmentation models for PE quantification, DL
algorithms to differentiate malignant from benign effusions
using CT and PET-CT, and ML-based classification systems
utilizing pleural fluid biomarkers. Among these, ensemble
models like XGBoost, RE and SVM that combine clinical,
radiological, and laboratory data have demonstrated high
diagnostic accuracy—particularly in distinguishing MPE from
TP often with AUCs above 0.90. Automated segmentation
tools such as nnU-Net and contrastive learning models have
shown near-expert accuracy and consistency in volume and
lesion analysis. Additionally, computer-aided cytological tools
like Aitrox and CAD systems for MPE detection have matched
the diagnostic performance of experienced cytopathologists,
suggesting potential for workflow standardization. Altogether,
these Al innovations offer non-invasive, rapid, and objective
clinical support and may redefine diagnostic approaches in
pleural disease management.

Although Al applications hold great promise for the future,
their integration into routine clinical practice still faces several
challenges. First, the algorithms require further optimization
and performance improvement. Most current studies are based
on single-center, small-scale datasets, lacking standardized
performance metrics and limiting generalizability. To enable
routine use, large-scale, multicenter studies with standardized
protocols are essential, along with strong collaboration among

Table 3. Top performing artificial intelligence applications in pleural diseases

Application area Model/algorithm

PE diagnosis (CXR) Deep learning

-Net tati
PE volume measurement (CT) ke SEEmE e
model

Pneumothorax detection (CXR) FDA-approved Al systems
XGBoost + clinical

MPE-BPE differentiation (CT) variables

Aitrox (DCNN, WSI)

Cytological MPE diagnosis

MPM diagnosis (PET-CT + markers) LLM, LR, 3D DCNN

patients, clinicians, institutions, and medical technology
companies.
Key performance metrics Readiness References
AUC: 97%
Sensitivity: 95% Research J
Specificity: 97%
DSC: 0.89
Research 12,13
ICC 20.995
Sensitivity: 84-94%, specificity: B
88-05% FDA-cleared
AUC >0.90
s Research =
Sensitivity >85%
AUC: 0.95
Accuracy: 91.7%, specificity: Research #
94.4%
AUC: 0.89-0.97
Research Bl

Accuracy: 82-91%

PE: pleural effusion, CXR: chest X-ray, CT: computed tomography, MPE: malignant pleural effusion, BPE: benign pleural effusion, MPM: malignant pleural
mesothelioma, PET: positron emission tomography, nnU-Net: no-new-U-Net segmentation framework, FDA: Food and Drug Administration, DCNN: deep
convolutional neural network, WSI: whole-slide imaging, LLM: logic learning machine, LR: logistic regression, AUC: area under the curve, DSC: dice similarity

coefficient, ICC: intraclass correlation coefficient, 3D: three dimensional
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