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ABSTRACT

Pleural diseases pose a significant burden on healthcare systems due to diagnostic challenges and high costs. Artificial intelligence 
(AI) has the potential to provide faster, more accurate, and more reliable results in the diagnosis of these diseases. This review 
evaluates the current status of AI technologies in the diagnosis of pleural effusion (PE), malignant PE, tuberculosis pleurisy (TP), 
pneumothorax, and malignant pleural mesothelioma (MPM). Deep learning algorithms developed for radiological diagnosis provide 
high sensitivity and specificity in determining the presence and severity of PE. AI models that integrate clinical parameters such as 
chest computed tomography (CT), positron emission tomography (PET)-CT, and tumour markers in distinguishing between benign 
and malignant effusions have significantly improved diagnostic accuracy (area under the curve: >0.90). In cytological diagnosis, 
computer-assisted systems such as Aitrox have demonstrated performance comparable to that of expert cytopathologists in diagnosing 
malignant effusions. In the diagnosis of TP, AI models outperform conventional diagnostic methods, particularly when combined with 
laboratory parameters such as adenosine deaminase. Food and Drug Administration-approved AI models are effectively used for the 
rapid diagnosis of pneumothorax and for emergency interventions. In MPM diagnosis, AI models using PET-CT images and three-
dimensional segmentation offer significant advantages in prognostic evaluation and treatment response monitoring. However, large-
scale, multi-centre studies are needed to standardise and generalise AI models. In light of these developments, AI may fundamentally 
change the diagnostic management of pleural diseases. 
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INTRODUCTION 
Pleural diseases are heterogeneous, with diverse etiologies posing complex diagnostic and therapeutic challenges.1,2 
Pleural diseases constitute a serious burden on healthcare systems and patients. They represent a significant burden, 
with an estimated annual incidence of 1.5 million cases in the USA and hospitalization costs exceeding 10 billion 
dollars.1-4 Despite established diagnostic principles, no single method adequately meets clinical needs, underscoring the 
demand for faster and more accurate tools.2,3

Artificial intelligence (AI), defined as the simulation of human cognition through machine learning (ML), deep 
learning (DL), and data analysis, has recently become an essential component of healthcare.5-7 Advances in big data 
and computational power have enabled AI to provide rapid, precise, and reliable analysis of radiological and clinical 
data, improving diagnostic accuracy and reducing clinician workload.3,5-7 While initially developed for imaging, 
AI in respiratory medicine is now applied not only to lung cancer screening but also to pleural effusion (PE) and 
pneumothorax, and has demonstrated high diagnostic performance in these applications. Well-trained AI systems 
integrating clinical, radiological, and laboratory data support physicians with greater accuracy and reduced need for 
immediate specialist access. Consequently, AI is expected to play an increasingly important role in chest medicine.3,5,6 A 
systematic review confirmed that AI-assisted observers outperformed human readers in detecting thoracic pathologies 
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on chest X-rays (CXR) and computed tomography (CT) scans, 
achieving higher sensitivity, specificity, accuracy, and area 
under the curve (AUC).8

This review discusses the current status, potential advantages, 
and limitations of AI applications in the diagnosis of pleural 
diseases, and comprehensively evaluates the potential 
contributions of these technologies to future clinical 
applications inlight of the existing literature. 

METHODS
A comprehensive search of the PubMed database was 
performed, without restriction on publication dates, using 
combinations of the following search terms: “pleural disease”, 
“pleural effusion”, “pneumothorax”, “pleural mesothelioma”, 
“tuberculous pleurisy”, “artificial intelligence”, “machine 
learning”, “deep learning”, “ultrasound”, “cytology”, and 
“PET-CT”. We included English-language human studies that 
reported the development, validation, or clinical impact of 
AI systems in pleural diseases across imaging [CXR, chest 
CT, positron emission tomography (PET)-CT, lung ultrasound], 
cytology/whole-slide imaging (WSI), and laboratory/biomarker 
data. We excluded non-pleural AI studies, editorials, letters 
without primary data, and purely technical papers lacking 
clinical outcomes. Reference lists and recent reviews were 
screened to identify additional relevant publications.

Technique and Modality Overview

Various imaging and laboratory modalities have been used in 
AI applications for pleural diseases. CXR is mainly used for 

triage of conditions such as pneumothorax and gross effusion. 
Chest CT allows detailed segmentation and complexity 
scoring of effusions. PET-CT provides additional differentiation 
between malignant and benign processes, as well as prognostic 
information in malignant pleural mesothelioma (MPM). 
Cytology with WSI supports benign-malignant triage in effusion 
samples. Lung ultrasound is increasingly being studied for real-
time guidance and monitoring, though data remain preliminary. 
Figure 1 illustrates the overall workflow of AI applications 
in pleural diseases across different imaging and laboratory 
modalities, while Table 1 summarizes their main tasks, reported 
performance metrics, and current readiness levels.

Artificial Intelligence in Radiological Diagnosis of Pleural 
Effusion

In a study, the AI model developed using 600 posterior-anterior 
chest radiographs had a sensitivity of 95%, a specificity 
of 97%, and an AUC of 97% for the detection of PE.9 The 
same study also showed that abnormal radiological findings, 
such as air-fluid level, atelectasis, bleb, cardiomegaly, bone 
fracture, infiltration, mass, nodule, obstructive airway disease, 
pneumonia, and scoliosis, which may introduce bias, did not 
affect the algorithm’s performance.

The AI model developed to assess PE severity may aid in 
treatment effectiveness and management. In a study evaluating 
the presence and severity of PE by AI in chest radiographs of 
chronic obstructive pulmonary disease patients, the model 
showed 85.4% accuracy (AUC: 0.95) for non-PE images; 
12.5% of the 14.5% errors were mild PE.10 Prediction accuracy 
rates for non-PE, small, moderate, and large effusions were 
83.95%, 74.19%, 62.16%, and 50%, respectively. Zhou et al.11 
developed DL models to detect and segment cardiomegaly, 
pneumothorax, and PE on chest radiographs. A high-quality, 
labeled radiograph dataset was created, with lesion regions 
annotated by radiologists. The model used AP75 (overlap ≥75% 
between predicted and actual lesion regions) as the performance 
metric. High accuracy was achieved in detecting cardiomegaly 
(AP75: 98.0%), pneumothorax (AP75: 71.2%), and PE (AP75: 
78.2%). Segmentation performance, evaluated using the dice 
similarity coefficient (DSC), was also strong (e.g., lung-field 
dice: 0.960). Detection and semi-quantitative analysis times 
with DL were significantly shorter than those of radiologists (P < 
0.001), potentially expediting clinical workflows. These models 
show promise in automating lesion detection and quantitative 
analysis, supporting radiologists’ diagnostic decision-making.

In a retrospective study, a series of DL-based sequential models 
was developed to automatically detect, segment, and classify PE 
as simple or complex using CT images from 2,659 patients.12 A 
detection-segmentation network based on the self-configuring 
nnU-Net architecture achieved 99% sensitivity, 98% specificity, 
and a DSC of 0.89, matching human-level volumetric consistency. 
 
Five classification models using the random forest (RF) 
algorithm, based on radiological features (hyperdense fluid, 
pleural thickening, gas, loculation) and radiomic features, 
reached an AUC of 0.77 for classifying simple vs. complex 
PE. Notably, pleural thickening yielded an AUC of 0.91, and 
hyperdense fluid achieved a negative predictive value (NPV) of 

Main Points

•	Artificial intelligence (AI)-based imaging algorithms 
achieve high diagnostic performance in pleural 
diseases, with deep learning models on chest computed 
tomography (CT) and positron emission tomography-CT 
consistently reporting area under the curve values >0.90 
for detecting pleural effusion (PE) and differentiating 
malignant from benign effusions.

•	Automated segmentation and quantification tools 
improve reproducibility and workflow efficiency, 
particularly for PE volume assessment and malignant 
pleural mesothelioma follow-up, reaching near–expert-
level agreement while reducing clinician workload.

•	Multimodal AI models that integrate imaging with 
clinical and laboratory data outperform single-modality 
approaches, enhancing diagnostic accuracy in malignant 
PE and tuberculous pleurisy, often surpassing traditional 
biomarkers alone.

•	AI-assisted cytology systems demonstrate diagnostic 
accuracy comparable to experienced cytopathologists, 
offering objective and rapid triage of malignant PEs and 
helping address inter-observer variability and workforce 
limitations.

•	Despite promising results, most AI applications lack 
large-scale prospective validation, highlighting the need 
for multicenter studies, standardized protocols, and 
careful clinical integration before routine adoption in 
pleural disease management.
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0.94. Segmentation accuracy remained unaffected by contrast 
use or effusion complexity, confirming the model’s robustness 
across diverse clinical scenarios.

In a prospective study of 79 patients, the accuracy of an AI 
algorithm that quantifies PE volume change via automatic 
segmentation of pre- and post-thoracentesis CT images was 
compared with actual drainage volumes.13 The fully automated 
method underestimated drainage by 13.1%, while the semi-
automated method, corrected by a thoracic radiologist, 
underestimated by 10.9% drainage, and the error increased 
linearly with fluid volume. Despite this, both agreement between 
methods [fully automated vs. semi-automated; intraclass 

correlation coefficient (ICC): 0.99] and test-retest reliability ICC: 
≥0.995 were excellent. These results indicate that, although AI-
based CT measurements are highly reproducible for clinical use, 
they consistently underestimate actual volumes, underscoring 
the need for calibration or correction, and highlighting the 
importance of accounting for algorithmic bias in quantitative 
monitoring of PE treatment response.

Artificial Intelligence in the Diagnosis of Malignant Pleural 
Effusion

The gold standard for differentiating malignant from benign 
PE is cytopathological examination of samples obtained by 
thoracentesis or pleural biopsy. Although they have high 

Figure 1. Workflow of artificial intelligence in pleural diseases by modality

Referral → imaging/labs (CXR, chest CT, PET-CT, LUS; cytology if present) → AI modules (triage, detection/segmentation, differential diagnosis, risk 
flags) → clinician review with thresholds → action (thoracentesis, biopsy, drain, follow-up) → monitoring (volume change, cytology triage)

Note: Performance pitfalls (e.g., small pneumothoraces on AP CXR and skin folds mimicking pneumothorax) highlight the need for site-specific 
calibration and continuous monitoring. In addition, all AI outputs are intended to function as decision-support tools and must be reviewed and 
validated by a physician before being used to guide clinical action

CXR: chest X-ray, CT: computed tomography, PET: positron emission tomography, LUS: lung ultrasound, AI: artificial intelligence, MPE: malignant 
pleural effusion, BPE: benign pleural effusion, MPM: malignant pleural mesothelioma, LUS: lung ultrasound, nnU-Net: segmentation model

Table 1. Overview of imaging and laboratory modalities used in artificial intelligence applications for pleural diseases

Modality Main AI task(s) Reported performance Notes

CXR Pneumothorax triage, effusion detection
Sensitivity 84-95%, specificity 
88-97%, AUC ≈ 0.95

FDA-cleared tools available

Chest CT Effusion segmentation, simple vs. complex PE 
classification

DSC 0.89; ICC ≥0.995
Highly reproducible, underestimates 
absolute volume

PET-CT MPE vs. BPE differentiation, MPM prognosis AUC up to 0.97
Small cohorts; potential in multimodal 
fusion

Cytology (WSI) Malign vs. benign triage AUC ≈ 0.95; accuracy >90% Comparable to expert cytopathologists

LUS Effusion detection/segmentation Accuracy >90%, DSC 0.70 Operator dependence reduced with AI

Note: Reported performance values vary depending on dataset size, study design, and validation method. “Readiness” refers to current status: Research (tested in 
retrospective or single-center studies) vs. FDA-cleared/deployed (approved tools already used in clinical workflows)
AI: artificial intelligence, CXR: chest X-ray, CT: computed tomography, PET: positron emission tomography, WSI: whole-slide imaging, LUS: lung ultrasound, PE: 
pleural effusion, MPE: malignant pleural effusion, BPE: benign pleural effusion, MPM: malignant pleural mesothelioma, DSC: Dice similarity coefficient, ICC: 
intraclass correlation coefficient, AUC: area under the curve, FDA: Food and Drug Administration
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specificity, their disadvantages include low positivity rates 
in pathological diagnosis, invasiveness, and high cost.14,15 
Therefore, non-invasive diagnostic methods with high sensitivity 
and improved diagnostic performance are needed.

Chest CT is one of the initial tools for the differential diagnosis 
of PE, and AI models may help reduce radiologists’ workload. 
Wang et al.16 developed an AI model that used chest CT 
features. The study analysed 918 PE cases—607 internal and 
311 external—and created a training cohort of 362 cases from 
another centre. The model follows a two-stage structure: first, 
PE areas were segmented from CT images, producing masks 
with high overlap with expert-defined boundaries (mean DSC: 
87.6%). Second, three dimensional (3D) PE masks and full 
CT volumes were used to classify the effusion as malignant 
or benign. The internal test cohort showed an AUC of 0.883, 
a sensitivity of 78.4%, and a specificity of 86.2%. In the 
external cohort, the AUC was 0.842, with 89.4% sensitivity 
and 65.1% specificity. Incorporating clinical data—such as sex, 
age, laterality, and PE volume—further improved AUCs in all 
three cohorts. The model detects suspicious areas, performs 
fine segmentation, and holistically analyzes chest CT features 
to differentiate benign pleural effusion (BPE) from MPE. The 
authors concluded that this AI model may assist radiologists 
and clinicians in PE case management.

Ozcelik et al.17 compared the quantitative features of PE on 
CT scans with cytological results. The positive predictive value 
(PPV), NPV, sensitivity, specificity, and accuracy of the DL model 
for the diagnosis of MPE were reported as 93.3%, 86.67%, 
87.5%, 92.86%, and 90%, respectively, for differentiating 
benign from malignant PE. In another study, the applicability 
of one DL model and five ML models in differentiating MPE 
from BPE was investigated.18 In this study, a total of 898 patients 
were included; data from 726 patients were used for training 
and testing the models, and data from 172 patients were used 
for the prospective validation. The diagnostic performance, as 
measured by the AUC, was 90.9% in the training set, 88.3% in 
the test set, and 86.6% in the validation set. When laboratory 
findings were included, the addition of the carcinoembryonic 
antigen (CEA) level in PE showed the best diagnostic 
performance, with an AUC of 90.9%, a sensitivity of 82.09%, 
and a specificity of 91.37% at a cut-off value of 3.6 ng/mL. 
Clinically, this threshold can help non-invasively distinguish 
malignant from benign effusions and guide decisions about 
whether to proceed with or defer invasive procedures. The 
results of this study show that using AI to guide physicians in PE 
management is a highly effective, non-invasive diagnostic aid.

In another study, an ML model based on clinical, blood, and 
pleural-fluid examination features was developed to classify the 
etiology of PE into five groups, including transudate, malignant, 
parapneumonic, tuberculous pleurisy (TP), and others.19 In this 
retrospective study, 18 basic features were identified by feature 
selection (FS), including history of malignancy; blood test 
results such as C-reactive protein and albumin; and pleural fluid 
characteristics such as lactate dehydrogenase (LDH), protein, 
adenosine deaminase (ADA), and CEA. The model’s AUC for 
detecting MPE was 0.930 in the validation set and 0.916 in the 
extra validation set. The light gradient boosting machine (GBM) 
model showed the best performance, with accuracies of 81.8% 

and 78.7% in the validation and extra validation datasets, 
respectively. This ML algorithm provided high accuracy in 
the differential diagnosis of PE and may be useful as a clinical 
decision-support system by guiding clinicians regarding the 
necessity of invasive procedures. 

Zhang et al.20 developed five ML models—XGBoost, logistic 
regression (LR), Bayesian additive regression trees, RF, and 
support vector machine (SVM)—to assess the diagnostic 
performance of CEA, CA19-9, CA125, and CA15-3 in PE. 
Using these models, 319 PE cases were analyzed using both 
individual and combined tumor markers. Among single-marker 
models, the XGBoost model with CEA showed the highest 
AUC (0.895) and sensitivity (80%), while that with CA153 had 
the highest specificity (98%). Among marker combinations, 
the XGBoost model with CEA + CA153 achieved the highest 
AUC (0.921) and sensitivity (85%), whereas both the XGBoost 
model with CA125 + CA153 and the LR model with CEA + 
CA153 + CA19-9 achieved the highest specificity (97%). In 
another study, five AI models were developed using laboratory 
data from 2,352 patients.21 The XGBoost model outperformed 
other models, with AUCs of 0.903, 0.918, and 0.886 in the 
training, validation, and test cohorts, respectively; it also 
achieved specificities of 89.2%, 93.4%, and 91.8%, and 
sensitivities of 86.1%, 84.4%, and 80.4%. PE CEA was the 
most important predictor, followed by serum CYFRA21-1, 
PE CA125, haematocrit, creatinine, calcium, and neutrophil 
percentage. The model also outperformed the standalone PE 
CEA in differentiating MPE from BPE.

The reported sensitivity of pleural fluid cytology is between 
40% and 90%, depending on the tumor cell type.22 However, 
inconsistencies are observed among pathologists in manual 
screening results, which suggest that these examinations are 
subjective. Although pleural metastasis indicates advanced-
stage disease with a survival of 3-12 months, patients’ life 
expectancy can be prolonged by prompt diagnosis. Early, 
accurate, rapid, and objective diagnoses can be achieved 
using automatic image analysis. Therefore, the development 
of computer-aided diagnosis (CAD) systems is essential. Win 
et al.23 developed a CAD system for the diagnosis of MPE. 
In this system, 201 cellular features were analysed, and high 
diagnostic performance was achieved, with 87.9% sensitivity, 
99.4% specificity, and 98.7% accuracy for the diagnosis 
of MPE. In another study, an AI model called “Aitrox” was 
applied to classify benign and malignant lung cancer cells 
in PE cytology.24 The diagnostic performance of the model 
was compared between junior and senior cytopathologists. 
The “Aitrox” AI model featured in this study is a weakly 
supervised DL method based on a deep convolutional neural 
network (DCNN) designed to classify benign and malignant 
cases in lung cytological images at the WSI level. Aitrox AI 
achieved 91.67% accuracy, 87.5% sensitivity, and 94.4% 
specificity, with an AUC of 0.9526. These rates were higher 
than those of young cytopathologists and similar to those of 
senior cytopathologists. It has been demonstrated that this AI 
model provides more objective and consistent results than 
those of cytopathologists and may help alleviate the shortage 
of cytopathologists. Current research shows that AI can be 
used as an effective tool in the rapid cytological diagnosis of 
MPE. In addition to classifying PE as malignant or benign, AI 
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models could be developed to detect atypical cases or cases 
suspected of being malignant.

In a study using an AI algorithm to screen PET-CT scans for 
the diagnosis of PE in patients with malignancy, a sensitivity 
of 95.5%, a specificity of 92.6%, and an AUC of 97.7% were 
obtained for the diagnosis of MPE.25 In the study, various 
clinical characteristics of the patients were not addressed, and 
the sample size was small; previous reports have also indicated 
that the results may differ if these limitations are mitigated.

Ultrasonography (USG) is widely used for diagnosing 
and monitoring lung pathologies due to its safety, bedside 
applicability, and low cost, though its main limitation is operator 
dependence. In a study aiming to develop an automated PE 
diagnosis system, a dataset of 623 videos comprising 99,209 
two dimensional (2D) USG images from 70 patients was 
created.26 Two models were trained using frame- and video-
based labels. Based on expert interpretations, the models 
achieved accuracies of 92.4% and 91.1%, respectively, with no 
significant difference between them. The study demonstrated 
that PE can be reliably and efficiently diagnosed from USG 
images using AI. In another study, a DL model was developed 
for accurate segmentation of lung USG images of PE, and its 
performance was compared with that of experts.27 A total of 
3,041 USG images from 24 PE patients were segmented by 
two USG experts and used as the ground truth. The model’s 
performance, assessed by DSC, was 0.70 for comparisons 
between the AI and experts, while the expert-to-expert DSC 
was 0.61. These results indicate that the algorithm’s accuracy 
is comparable to that of human experts, supporting its potential 
as a reliable tool in PE diagnosis and management. 

Artificial Intelligence in the Diagnosis of Tuberculous Pleurisy 

TP is one of the most common forms of extrapulmonary 
tuberculosis (TB).28,29 The incidence of TP varies according to 
the prevalence of TB. While it constitutes 4% of all TB cases 
in the USA, TP constitutes 20% of cases in South Africa.29 The 
gold standard for the diagnosis of TP is the demonstration of TB 
bacilli in PE or biopsy samples. Elevated ADA and interferon-
gamma (IFN-γ) levels in PE are important supportive diagnostic 
markers.30,31 Comprehensive PE analysis, including ADA and 
IFN-γ levels, yields higher diagnostic accuracy; however, 
different cut-off values are reported.30-32 On the other hand, the 
efficiency of these markers varies with disease prevalence and 
age group.30,31 The microbiological culture positivity of PE for 
the diagnosis of TP ranges from 12% to 70%, and the highest 
reported diagnostic yield is 30%.30 When solid media are used, 
it can take up to 8 weeks to obtain the results.30 Pleural biopsy 
is another invasive, costly, and complication-prone diagnostic 
procedure. TP usually heals spontaneously, but 43-65% of 
these patients develop TB within a few years.30,31 Therefore, 
early diagnosis and treatment of TP are important to prevent 
both fibrothorax and recurrent TB disease. It is necessary to 
develop a less-invasive, low-cost method with a high diagnostic 
yield for the diagnosis of TP.28,30-32

Several studies have explored the potential of AI models to 
enhance clinicians’ diagnostic performance in TP. Ren et al.32 
compared the performance of four AI models—LR, k-nearest 
neighbour (KNN), SVM, and RF—against pleural fluid 

adenosine deaminase (pfADA) levels using a dataset of 443 PE 
cases that included demographic, clinical, and fluid analysis 
data. Combining AI models with pfADA yielded the highest 
diagnostic performance: 85.4% sensitivity, 84.1% specificity, 
and 84.7% accuracy at a pfADA cut-off of 17.5 U/L. When 
the cut-off is set at 17.5 U/L, the threshold can support clinical 
decision-making by favoring early initiation of anti-TB treatment 
in patients with a high pretest probability and concordant 
imaging or clinical findings, while deferring invasive procedures 
such as pleural biopsy. LR estimates outcome probabilities; 
KNN classifies based on the majority class of nearby samples; 
SVM identifies a hyperplane maximizing class separation; and 
RF uses multiple decision trees, combining their outputs to 
reduce overfitting and improve stability. Among all models, RF 
achieved the best performance (AUC: 0.971; sensitivity: 89.1%; 
specificity: 93.6%; PPV: 91.3%; NPV: 91.5%), outperforming 
LR (AUC: 0.876), KNN (AUC: 0.895), and SVM (AUC: 0.918), 
and pfADA alone. 

A prospective multicentre study assessed, using ML, the 
diagnostic value of ADA levels, routine pleural fluid parameters 
(pH, glucose, protein, LDH, cell counts), and age for TP 
diagnosis in low-prevalence areas.33 The SVM model showed 
the best performance with 97% accuracy, AUC: 0.98, 91% 
sensitivity, and 98% specificity. When ADA >40 U/L and 
lymphocyte ratio >50% were used, sensitivity and specificity 
were 97% and 93%, respectively, with a 100% NPV. In low-
prevalence settings, this high NPV can help avoid unnecessary 
invasive diagnostic procedures by reliably ruling out TP. 
Including age and routine clinical parameters increased ADA 
specificity to 98% and PPD positivity rate to 64%, supporting 
its non-invasive diagnostic value. Another study used a decision 
tree and a weighted sparse representation-based classification 
(WSRC) model to differentiate TP from MPE based on pleural 
biomarkers.34 Among 236 patients, ADA had the best individual 
performance (sensitivity: 91.9; specificity: 74%). Accuracy 
improved when age, polynuclear leukocytes, and lymphocytes 
were added. WSRC achieved an AUC of 0.877, sensitivity 
93.3%, specificity 82.0%, PPV 87.5%, and NPV 90.1%. A 
decision flowchart based on these markers achieved an accuracy 
of 88.8% and provided a cost-effective and reliable tool. Liu et 
al.35 developed several ML models for early TP diagnosis using 
data from 1,435 patients (plus 153 for external validation). 
The SVM model performed best, with 87.7% accuracy, 85.3% 
precision, an AUC of 0.914, 94.7% sensitivity, and 80.7% 
specificity. PE-ADA, PE-CEA, and serum CYFRA21-1 were the 
top predictors. In another study, five AI models—including LR, 
RF, gradient boosting, deep neural networks, and a contrastive-
loss model—were compared to assess the etiology of PE, with 
ADA levels incorporated.36 The contrastive-loss model had 
the best performance (sensitivity: 84.1%; specificity: 94.1%), 
surpassing those of traditional ADA-based criteria (sensitivity: 
80.2%; specificity: 90.3%). 

Li et al.37 aimed to develop a novel AI model to diagnose 
TP. The study used 77 features, including clinical symptoms, 
routine blood tests, biochemical markers, pleural fluid cell 
counts, and fluid biochemistry. To optimize performance and 
identify key diagnostic factors, a FS model was used. The top 
five features were PE-ADA level, percentage of lymphocytes in 
pleural effusion (PELP), age, body temperature, and pleural fluid 
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color. An SVM model classified patients as TP or non-TP. The 
moth flame optimization (MFO) algorithm optimized the SVM 
parameters to achieve optimal performance. The resulting FS-
MFO-SVM model achieved 95% accuracy, 93.35% sensitivity, 
97.57% specificity, and an AUC of 95.6. This model predicts 
TP using patient data, such as clinical signs, blood tests, and 
pleural fluid analysis, with decisions primarily based on PE-
ADA, PELP, age, temperature, and fluid color. The authors 
suggested that this non-invasive method could be an alternative 
to pleural biopsy and could hold promise for use in resource-
limited settings due to its low cost and portability.

Artificial Intelligence in the Diagnosis of Pneumothorax

Pneumothorax can cause significant morbidity and mortality 
depending on the severity of the air leak and on the patient’s 
cardiopulmonary reserve, as it impairs oxygenation and 
ventilation. Rapid detection and intervention are therefore 
essential. Chest radiography is the first-line and most commonly 
used imaging modality for diagnosis. However, pneumothorax 
may go undetected in 20% of cases, requiring thoracic CT. 
Researchers have evaluated the performance of radiologists and 
AI using large CXR datasets, with promising results. AI can be 
particularly helpful in settings that lack experienced clinicians or 
radiologists, both for detection and for severity grading. However, 
digital image quality and the presence of chest tubes have 
been shown to limit AI performance. On CXRs, AI models may 
misidentify a chest tube as a pneumothorax or focus on the tube 
instead of the actual air leak, reducing diagnostic accuracy.6,38

Various AI models have been developed for pneumothorax 
detection, and many of these models have received Food 
and Drug Administration (FDA) approval. The sensitivity of 
FDA-approved AI tools for diagnosing pneumothorax ranges 
from 84.3% to 94.6%, and specificity ranges from 87.9% to 
95.1%. AI can be used primarily for triage and to provide a 
second opinion. AI requires less time to read radiographs than 
physicians do. Pneumothorax among patients presenting to 
the emergency department is very rare, when considering all 
radiographs obtained. An AI-enabled pneumothorax detection 
tool can rapidly identify true-positive cases and reduce waiting 
times for these cases in the emergency department.39,40

Studies comparing the performance of AI with that of 
radiologists are crucial for understanding AI’s effectiveness 
and limitations in medical imaging. In a meta-analysis of 63 
studies, the overall AUC was found to be 0.97 for both AI and 
physicians.39 In this meta-analysis, the average sensitivity was 
84% for AI and 85% for physicians; the average specificity 
was 96% for AI and 98% for physicians. In a multicenter 
retrospective study of 2,040 patients, Plesner et al.41 reported 
that AI models detected pneumothorax with sensitivities of 63-
90% and specificities of 98-100%. False-negative rates were 
comparable to those in radiology reports, but AI showed higher 
false-positive rates. Sensitivity decreased for small lesions, and 
specificity was lower for A-P chest radiographs and cases with 
multiple simultaneous pathologies. Kim et al.42 developed an 
AI-based model to calculate pneumothorax area and compared 
its performance with that of an experienced radiologist 
and a gold-standard CT-based method. The measured 

pneumothorax rates were 5.41% for the radiologist and 8.45% 
for AI, representing a 3.04 percentage-point gap favoring the 
radiologist. However, no significant difference was observed 
between AI predictions and the gold standard (P = 0.11). The 
AI model successfully predicted the need for thoracostomy 
when the proportion of the chest radiograph occupied by 
pneumothorax exceeded 21.6%. Despite limitations such as a 
retrospective design and small sample size, the study highlights 
AI’s potential utility in clinical practice. A study of 500 chest 
radiographs that investigated radiologists’ performance with 
and without AI assistance found that unaided radiologists 
achieved the highest sensitivity (75.7%) and specificity (99-
99.7%) in the diagnosis of pneumothorax.43 AI alone achieved 
99% specificity for pneumothorax and improved sensitivity 
for all findings compared with unaided readers. Additionally, 
AI assistance reduced average reading times by 25 seconds 
(from 81 to 56 seconds, P < 0.001) without affecting specificity. 
However, AI-assisted radiologists did not outperform AI alone, 
possibly because mistrust of AI led to accurate detections 
being dismissed. The study highlights AI’s potential to enhance 
diagnostic sensitivity and efficiency across expertise levels 
while reducing reading times for chest radiographs. 

Hillis et al.40 evaluated the performance of an AI model 
designed to detect pneumothorax and tension pneumothorax. 
This AI model identified pneumothorax with 94.3% sensitivity, 
92.0% specificity, and an AUC of 0.979, and detected tension 
pneumothorax with 94.5% sensitivity, 95.3% specificity, and 
an AUC of 0.987. When subgroup analyses were conducted for 
gender, age, patient’s position, and projections, all subgroups 
achieved at least a sensitivity of 80%, and a specificity of 
80% with an AUC of 0.95. Even in the presence or absence of 
potentially biasing findings, detection of both pneumothorax 
and tension pneumothorax maintained 80% sensitivity and 
80% specificity, with an AUC of 0.95. 

Thian et al.44 investigated the performance and generalizability 
of an AI model on 2,931 chest radiographs. The mean AUC was 
0.94, with a sensitivity of 88%, specificity of 88%, PPV of 71%, 
and NPV of 95%. The model demonstrated lower performance 
for small pneumothoraces compared to larger ones (AUC 0.88 
vs. 0.96; P = 0.005). The model’s performance did not differ 
between radiographs with and without chest tubes (AUC 0.95 
vs. AUC 0.94; P > 0.99) or between radiographic projections 
(A-P vs. P-A; AUC 0.92 vs. AUC 0.96; P = 0.05). Thian et al.44 
showed that the AI model trained on a large database became 
generalizable after limiting factors unrelated to the training data 
were eliminated. In the study by Lee et al.45, the overall PPV for 
AI-assisted pneumothorax diagnosis was reported to be 41.1%. 
The PPV was higher for P-A views (88.2%), but dropped to 
20.1% for A-P views. Younger age, P-A projection, and larger 
pneumothorax were associated with increased PPV for AI-
assisted pneumothorax diagnosis. In 31.3% of false-positive 
cases flagged by AI, the underlying cause was identified: 20.5% 
were due to skin folds, 5.6% to chest wall abnormalities, 3.1% 
to bullae, and 2.1% to rib opacities.

Hong et al.46 evaluated 1,319 patients who underwent 
transthoracic lung biopsy, using an AI model to assess post-
procedural chest radiographs for iatrogenic pneumothorax. 
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They found that the AI-assessed group had higher sensitivity 
(85.4% vs. 67.1%), NPV (96.8% vs. 91.3%), and accuracy 
(96.8% vs. 92.3%) than radiologists’ interpretations (P < 0.001).46 
There were no significant differences between the groups in 
specificity and PPV (P = 0.46 and P = 0.45). In analyses based on 
pneumothorax volume, the AI model showed higher sensitivity 
in patients with pneumothorax <10% (74.5% vs. 51.4%, P = 
0.009) and in those with pneumothorax 10-15% (92.7% vs. 
70.2%, P = 0.008). Among patients with pneumothorax, the 
AI-assessed group required fewer catheters than the other 
group (2.4% vs. 5%, P = 0.009). At the conclusion of the study, 
the researchers suggested that the AI model could be used to 
diagnose iatrogenic pneumothorax on CXRs, allowing patients 
with small pneumothoraces to be diagnosed earlier and treated 
conservatively before air leakage progresses.

Artificial Intelligence in the Diagnosis of Malignant Pleural 
Mesothelioma

MPM is associated with asbestos exposure in 80% of cases. 
Although asbestos is banned in many countries, MPM incidence 
continues to rise. Given a poor prognosis and average survival 
of 9-14 months after diagnosis, rapid and accurate detection 
and assessment of treatment response are essential. Prognosis 
and treatment monitoring often rely on tumor segmentation in 
serial thoracic CT scans and interpretation of PET-CT images-
processes prone to human error and a high workload for 
radiologists. 3D CT image analysis offers advantages for more 
accurate prognosis and treatment evaluation. Accordingly, 
various AI models have been developed and investigated for 
MPM applications.47-50

Segmentation of MPM is highly challenging, as it relies 
solely on density differences to distinguish tumor tissue from 
surrounding benign soft tissue. In Sensakovic et al.47 study, 
a system was developed to automate segmentation and 
volumetric measurement. This method yielded 3D positional 
and volumetric information that was validated against 2D 
manual detections, significantly reducing human error 
and saving time. This allowed pleural abnormalities to be 
objectively monitored through serial imaging and for changes 
in size to be detected. In a study by Karapınar Şentürk and 
Çekiç48, the performance of five AI models for diagnosing MPM 
was evaluated in terms of accuracy and sensitivity. The models’ 
accuracies ranged from 80% to 100%, and sensitivities ranged 
from 50% to 100%. SVM and Artificial Neural Networks 
(ANN) demonstrated the highest accuracy and sensitivity 
(100%). However, because the majority of samples in this study 
belonged to non-diseased groups, these rates may differ in real-
world settings. Another study investigated the performance of 
a 3D DCNN-based AI model that used PET-CT to differentiate 
MPM from benign pleural diseases.49 Results from four datasets 
were analyzed: PET-CT-AI; radiologist interpretation; maximum 
standardized uptake value (SUVmax) quantitative method; and 
PET-CT combined with SUVmax, gender, and age, with AI. The 
AUC values were 82.5%, 85.4%, 88.1%, and 89.6. In the last 
protocol, sensitivity, specificity, and accuracy were 88.5%, 
73.6%, and 82.4%, respectively. AI integrated solely with 
PET-CT demonstrated inferior performance compared with 
expert interpretation and SUVmax-based quantitative methods. 

However, AI integrating PET-CT, SUVmax, gender, and age 
demonstrated superior diagnostic performance compared with 
human interpretation and SUVmax-based methods. In a study by 
Er and Tanrikulu50 involving 324 MPM cases, a newly developed 
AI system achieved an accuracy rate of 97.7%, outperforming 
the ANN algorithm. This algorithm has been reported to be an 
excellent auxiliary tool for diagnosing MPM. 

No single PE biomarker provides sufficient diagnostic accuracy 
for MPM. Therefore, using multiple biomarkers could be 
a suitable approach to improve diagnostic efficiency. The 
integration of multiple biomarkers using AI models can 
enhance diagnostic yield. In a study involving 188 patients 
with undiagnosed PE, six ML-based AI models were tested 
using the biomarkers SMRP, CEA, and CYFRA21-1: LR, linear 
discriminant analysis, multivariate adaptive regression splines, 
KNN, GBM, and RF.51 Among these algorithms, the LR model 
significantly improved the diagnostic accuracy for MPM, 
achieving an AUC of 0.97 and an accuracy of 91%. Similarly, 
another study examined four AI models for the differential 
diagnosis of MPM based on cytological analysis and tumor 
marker concentrations.52 The logic learning machine (LLM) 
showed the highest performance, with an accuracy of 77.5%, 
while the accuracies of the other three methods —KNN, ANN, 
and decision tree models— ranged from 54.4% to 72.8%. 
Furthermore, the LLM achieved diagnostic accuracies of 79% 
for MPM, 66% for pleural metastasis, and 89% for benign 
pleural diseases.

DISCUSSION
Most of the current AI studies in pleural diseases are based on 
relatively small, single-center cohorts, which inherently limit 
their external validity and generalizability. While reported 
accuracy and AUC values are often high, these findings should 
be interpreted with caution, as the real-world performance of 
AI models may differ substantially in heterogeneous patient 
populations and across diverse clinical settings. Therefore, 
large-scale, multicenter validation studies are urgently needed 
to confirm their clinical applicability.

Strengths and Limitations of Artificial Intelligence in Pleural 
Diseases

Despite promising results, AI models in pleural diseases face 
several important limitations (Table 2). Data imbalance and 
selection bias may lead to overfitting, reducing the reliability 
of predictions when applied to broader populations. Another 
critical issue is explainability: the so-called “black-box” nature 
of DL algorithms limits clinicians’ ability to understand how 
specific outputs are generated, thereby reducing clinicians’ 
trust in the technology. Furthermore, the lack of transparency 
complicates clinical decision-making, especially in high-
stakes scenarios such as invasive interventions. Finally, the 
majority of existing models are validated retrospectively, which 
underscores the need for prospective, multicenter studies with 
rigorous external validation before routine clinical adoption.

Implementation and Clinical Integration

For the rational integration of AI into pleural disease 
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management, stepwise frameworks should be considered. At 
the initial stage, AI can serve as a triage and screening tool, 
for example in chest radiography for effusion or pneumothorax 
detection. At the intermediate level, AI models may provide 
decision support by predicting the likelihood of malignancy 
and guiding the necessity of invasive procedures such as 
thoracentesis or biopsy. At the advanced level, AI may assist 
in treatment monitoring, such as evaluating changes in effusion 
volume or tumor burden in MPM. Importantly, AI should be 
viewed as an adjunctive decision-support system rather than 
a replacement for physician judgment, with outputs always 
interpreted within the broader clinical context. Our findings are 
consistent with the recent narrative review by Marchi et al.,7 
which also emphasized the importance of critically evaluating 
AI models, particularly regarding their generalizability and the 
necessity of developing frameworks for rational integration into 
clinical workflows.

AI applications for pleural diseases require careful planning 
for translation into clinical workflows. Intended clinical roles 
include triage and second-read tools for pneumothorax on chest 
radiographs, automated segmentation and volume tracking of 
PEs on CT, and cytology triage systems to prioritize suspicious 
samples for pathologist review.

• Integration: Seamless interoperability with Picture Archiving 
and Communication Systems and Electronic Health Records is 
essential. AI outputs should be provided in DICOM-compatible 

formats, incorporated into structured reports, and logged with 
audit trails to maintain accountability.

• Regulatory examples: The approval and deployment of 
FDA-cleared pneumothorax detection algorithms provide 
precedents for the integration of AI in pleural disease 
workflows. These experiences highlight the importance of 
prospective validation, calibration, and clinician oversight in 
safe implementation.

• Training: Adoption requires short, role-specific training 
sessions for radiologists, pulmonologists, and pathologists. 
Training should cover interpretation of confidence scores, 
handling of false positives, and recognition of model 
limitations.

• Cost and time-saving considerations: Evidence from real-
world radiology practice suggests that AI triage can reduce 
report turnaround times and improve sensitivity. Automated 
CT segmentation and cytology triage also have the potential 
to reduce workload and shorten diagnostic delays. Formal 
cost-effectiveness analyses remain necessary to confirm the 
economic value of these tools in pleural disease management.

Future Directions

To accelerate translation of AI in pleural diseases into clinical 
practice, the following priorities are needed:

Table 2. Strengths and limitations of artificial intelligence models in pleural diseases

Modality/AI 
application Strengths Limitations References

Chest X-ray
Widely available, fast triage (PE, 
pneumothorax); FDA-cleared tools exist; high 
sensitivity/specificity in large datasets

Lower accuracy in small effusions/pneumothorax; 
susceptible to artifacts (skin folds, tubes); 
generalizability depends on dataset diversity

9-11,38-46

Chest CT

Excellent anatomical detail; robust 
segmentation with nnU-Net; reproducible 
volume analysis; useful for simple vs. complex 
PE classification

Consistently underestimates absolute fluid 
volume; requires calibration; high radiation 
exposure; most studies single-center with limited 
validation

12,13,17-19

PET-CT
Adds functional data for MPE vs. BPE and 
MPM prognosis; multimodal fusion improves 
performance; high reported AUC

Small sample sizes; expensive and limited 
availability; performance may drop in real-world 
heterogeneous populations

16,25,49

Cytology/WSI

AI systems (e.g., Aitrox) achieve performance 
comparable to expert cytopathologists; 
potential to reduce inter-observer variability; 
supports rapid triage

Dependent on quality of slide preparation; limited 
datasets; still requires pathologist oversight; “black 
box” decisions reduce trust

23,24

Lung ultrasound
Safe, bedside, radiation-free; AI reduces 
operator dependency; early studies show 
>90% accuracy

Limited training data: performance varies 
with probe settings and acquisition quality; 
segmentation less robust than CT

26,27

Tuberculous 
pleurisy models

AI + ADA and lab parameters improve 
diagnostic yield; potential non-invasive 
alternative to biopsy in resource-limited 
settings

Cut-off values differ by geography/epidemiology; 
small sample sizes; external validation rare

32-37

Malignant pleural 
mesothelioma

AI-based segmentation improves 
reproducibility in tumor volume monitoring; 
multimodal models integrate PET-CT + 
biomarkers with promising accuracy

Challenging tumor-benign tissue differentiation; 
many studies use retrospective datasets; real-world 
validation lacking

47-52

AI: artificial intelligence, CT: computed tomography, PET: positron emission tomography, WSI: whole-slide imaging, PE: pleural effusion, FDA: Food and Drug 
Administration, nnU-Net: no-new-U-Net segmentation framework, MPE: malignant pleural effusion, BPE: benign pleural effusion, MPM: malignant pleural 
mesothelioma, AUC: area under the curve, ADA: adenosine deaminase
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• Multicentre prospective trials with predefined thresholds and 
patient-relevant outcomes to validate diagnostic performance 
in real-world settings.

• Domain-shift and out-of-distribution testing across different 
scanners, institutions, and patient populations to ensure 
generalizability.

• Multimodal data fusion combining imaging (CT, PET-CT, USG), 
cytology, and clinical data to enhance predictive accuracy and 
robustness.

• Real-time USG guidance tools to support novice operators 
and improve procedure safety and efficiency.

• Economic evaluations and cost-effectiveness analyses to 
clarify resource savings and sustainability within healthcare 
systems.

• Bias and calibration checks at deployment sites, with 
continuous monitoring dashboards to maintain safety and 
fairness.

• Creation of open datasets and benchmarks for pleural imaging, 
cytology, and biomarker AI tasks to foster reproducibility and 
global collaboration.

• These steps will provide the field with a clear roadmap, 
bridging experimental success toward responsible clinical 
implementation.

CONCLUSION
Based on current evidence, the most promising AI applications 
in pleural diseases are listed in Table 3. These include 
radiological segmentation models for PE quantification, DL 
algorithms to differentiate malignant from benign effusions 
using CT and PET-CT, and ML-based classification systems 
utilizing pleural fluid biomarkers. Among these, ensemble 
models like XGBoost, RF, and SVM that combine clinical, 
radiological, and laboratory data have demonstrated high 
diagnostic accuracy—particularly in distinguishing MPE from 
TP, often with AUCs above 0.90. Automated segmentation 
tools such as nnU-Net and contrastive learning models have 
shown near-expert accuracy and consistency in volume and 
lesion analysis. Additionally, computer-aided cytological tools 
like Aitrox and CAD systems for MPE detection have matched 
the diagnostic performance of experienced cytopathologists, 
suggesting potential for workflow standardization. Altogether, 
these AI innovations offer non-invasive, rapid, and objective 
clinical support and may redefine diagnostic approaches in 
pleural disease management.

Although AI applications hold great promise for the future, 
their integration into routine clinical practice still faces several 
challenges. First, the algorithms require further optimization 
and performance improvement. Most current studies are based 
on single-center, small-scale datasets, lacking standardized 
performance metrics and limiting generalizability. To enable 
routine use, large-scale, multicenter studies with standardized 
protocols are essential, along with strong collaboration among 
patients, clinicians, institutions, and medical technology 
companies.

Table 3. Top performing artificial intelligence applications in pleural diseases

Application area Model/algorithm Key performance metrics Readiness References

PE diagnosis (CXR) Deep learning

AUC: 97% 

Sensitivity: 95% 

Specificity: 97%

Research 9

PE volume measurement (CT)
nnU-Net segmentation 
model

DSC: 0.89

ICC ≥0.995
Research 12,13

Pneumothorax detection (CXR) FDA-approved AI systems
Sensitivity: 84-94%, specificity: 
88-95%

FDA-cleared 39,40

MPE-BPE differentiation (CT)
XGBoost + clinical 
variables

AUC >0.90

Sensitivity >85%
Research 16

Cytological MPE diagnosis Aitrox (DCNN, WSI)
AUC: 0.95

Accuracy: 91.7%, specificity: 
94.4%

Research 24

MPM diagnosis (PET-CT + markers) LLM, LR, 3D DCNN
AUC: 0.89-0.97

Accuracy: 82-91%
Research 49,51

PE: pleural effusion, CXR: chest X-ray, CT: computed tomography, MPE: malignant pleural effusion, BPE: benign pleural effusion, MPM: malignant pleural 
mesothelioma, PET: positron emission tomography, nnU-Net: no-new-U-Net segmentation framework, FDA: Food and Drug Administration, DCNN: deep 
convolutional neural network, WSI: whole-slide imaging, LLM: logic learning machine, LR: logistic regression, AUC: area under the curve, DSC: dice similarity 
coefficient, ICC: intraclass correlation coefficient, 3D: three dimensional
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