Abstract
Abstract
OBJECTIVES:
Effects of air pollution parameters of sulfur dioxide (SO2) and particulate matter (PM10) values on the respiratory system were investigated.
MATERIAL AND METHODS:
Data of SO2 and PM10 were obtained daily for air pollution and classified into two groups: Group I (2006–2007), coal burning years and Group II (2008–2009), natural gas+ coal burning. Groups I and II were divided into two subgroups according to the months of combustion as combustible (November-April) and noncombustible (May-October). The number of patients with asthma and chronic obstructive pulmonary disorder (COPD) was recorded between 2006 and 2009.
RESULTS:
There was no statistically significant difference between Groups I and II for PM10 and SO2 (p>0.05). Within the years, the values of SO2 and PM10 were statistically different between the groups defined by month (p<0.01). The number of patients in the combustible and noncombustible subgroups were found to be different for every 4 years, and the numbers of patients with COPD or asthma were not changed through the years. There was a strong correlation between PM10 and COPD (r=0.59, p<0.01) and a weak correlation between PM10 and asthma (r=0.25, p>0.05). A correlation was found between SO2 and COPD (p<0.01) but not between SO2 and asthma (p>0.05). The number of visits for COPD and asthma was statistically different between combustible and noncombustible subgroups (X2:58.61, p=0.000; X2:34.55, p=0.000, respectively). The r2 values for SO2 and PM10 for COPD patients were 17% and 24%, respectively, in contrast to 8% and 5%, respectivley for asthma patients.
CONCLUSION:
Air pollution is known to increase respiratory disease occurrences. With decrease in the usage of solid fuel, air pollution could be reduced and may be effective in preventing respiratory diseases.